Automated systems that negotiate with humans have broad applications in pedagogy and conversational AI. To advance the development of practical negotiation systems, we present CaSiNo: a novel corpus of over a thousand negotiation dialogues in English. Participants take the role of campsite neighbors and negotiate for food, water, and firewood packages for their upcoming trip. Our design results in diverse and linguistically rich negotiations while maintaining a tractable, closed-domain environment. Inspired by the literature in human-human negotiations, we annotate persuasion strategies and perform correlation analysis to understand how the dialogue behaviors are associated with the negotiation performance. We further propose and evaluate a multi-task framework to recognize these strategies in a given utterance. We find that multi-task learning substantially improves the performance for all strategy labels, especially for the ones that are the most skewed. We release the dataset, annotations, and the code to propel future work in human-machine negotiations: https://github.com/kushalchawla/CaSiNo
翻译:与人类谈判的自动化系统在教学学和对话性AI中具有广泛的应用。为了推动实际谈判系统的发展,我们以英语介绍CaSiNo:一千多个谈判对话的新材料。参与者扮演营邻居的角色,为即将到来的行程谈判食物、水和木柴包。我们的设计结果在语言上丰富多样的谈判,同时保持一个可移动、封闭的环境。在人类谈判文献的启发下,我们提出说服策略并进行相关分析,以了解对话行为如何与谈判表现相联系。我们进一步提议和评估一个多任务框架,以在特定的语言中承认这些战略。我们发现,多任务学习极大地改善了所有战略标签的性能,特别是最偏斜的标签。我们发布了数据集、说明以及推进人类机械谈判未来工作的代码:https://github.com/kushalchawla/CaSiNo。我们发现,多任务学习极大地改善了所有战略标签的性能,特别是最偏斜的标签。我们发布了数据集、说明和代码,以推进人类机械谈判的未来工作:https://github.com/kushalchawla/CaSiNo。