We develop a geometrically intrinsic formulation of the arbitrary-order Virtual Element Method (VEM) on polygonal cells for the numerical solution of elliptic surface partial differential equations (PDEs). The PDE is first written in covariant form using an appropriate local reference system. The knowledge of the local parametrization allows us to consider the two-dimensional VEM scheme, without any explicit approximation of the surface geometry. The theoretical properties of the classical VEM are extended to our framework by taking into consideration the highly anisotropic character of the final discretization. These properties are extensively tested on triangular and polygonal meshes using a manufactured solution. The limitations of the scheme are verified as functions of the regularity of the surface and its approximation.
翻译:我们开发了多角细胞任意顺序虚拟元素法(VEM)的几何内在公式,用于对椭圆表面部分差异方程式(PDEs)进行数字解析。PDE首先使用适当的本地参考系统以共变形式写成。当地对称知识使我们可以考虑二维VEM方案,而没有表面几何的明显近似值。传统的VEM的理论特性通过考虑到最终离散的高度异地特性而扩展到我们的框架。这些特性在三角形和多角间贝类上广泛测试,使用制造的解析法。该办法的局限性作为表层规律及其近近地的功能加以核实。