We recently developed a neural network that receives as input the geometrical and mechanical parameters that define a violin top plate and gives as output its first ten eigenfrequencies computed in free boundary conditions. In this manuscript, we use the network to optimize several error functions, with the goal of analyzing the relationship between the eigenspectrum problem for violin top plates and their geometry. First, we focus on the violin outline. Given a vibratory feature, we find which is the best geometry of the plate to obtain it. Second, we investigate whether, from the vibrational point of view, a change in the outline shape can be compensated by one in the thickness distribution and vice versa. Finally, we analyze how to modify the violin shape to keep its response constant as its material properties vary. This is an original technique in musical acoustics, where artificial intelligence is not widely used yet. It allows us to both compute the vibrational behavior of an instrument from its geometry and optimize its shape for a given response. Furthermore, this method can be of great help to violin makers, who can thus easily understand the effects of the geometry changes in the violins they build, shedding light on one of the most relevant and, at the same time, less understood aspects of the construction process of musical instruments.


翻译:我们最近开发了一个神经网络, 作为输入输入, 以几何和机械参数来定义小提琴顶部板块, 并给出其第一个10个外形。 在这份手稿中, 我们利用这个网络优化了几个错误功能, 目的是分析小提琴顶部板块和几何之间的关系。 首先, 我们聚焦于小提琴轮廓。 我们发现一个振动特征, 这是板块的最佳几何特征 。 其次, 我们从振动角度来研究, 轮廓形状的改变是否可以用厚度分布来补偿, 反之亦然。 最后, 我们分析如何修改小提琴形状, 以保持其物质特性的不变。 这是音乐声学中的原创技术, 人工智能尚未被广泛使用 。 它让我们从一个仪器的几何学角度来计算振动行为, 并优化其形状来做出响应。 此外, 这种方法可以极大地帮助小提琴制作者, 这样他们就能轻松理解小提琴的几何变化的影响, 从而可以轻松地理解小提琴的音质仪器构造中最相关的一个方面, 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐 | 机器学习开源项目 Top 10
AI100
3+阅读 · 2018年3月21日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
126+阅读 · 2020年9月6日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
9+阅读 · 2018年3月28日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐 | 机器学习开源项目 Top 10
AI100
3+阅读 · 2018年3月21日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员