We consider infinite-horizon $\gamma$-discounted (linear) constrained Markov decision processes (CMDPs) where the objective is to find a policy that maximizes the expected cumulative reward subject to expected cumulative constraints. Given access to a generative model, we propose to solve CMDPs with a primal-dual framework that can leverage any black-box unconstrained MDP solver. For linear CMDPs with feature dimension $d$, we instantiate the framework by using mirror descent value iteration (\texttt{MDVI})~\citep{kitamura2023regularization} an example MDP solver. We provide sample complexity bounds for the resulting CMDP algorithm in two cases: (i) relaxed feasibility, where small constraint violations are allowed, and (ii) strict feasibility, where the output policy is required to exactly satisfy the constraint. For (i), we prove that the algorithm can return an $\epsilon$-optimal policy with high probability by using $\tilde{O}\left(\frac{d^2}{(1-\gamma)^4\epsilon^2}\right)$ samples. For (ii), we show that the algorithm requires $\tilde{O}\left(\frac{d^2}{(1-\gamma)^6\epsilon^2\zeta^2}\right)$ samples, where $\zeta$ is the problem-dependent Slater constant that characterizes the size of the feasible region. Furthermore, we prove a lower-bound of $\Omega\left(\frac{d^2}{(1-\gamma)^5\epsilon^2\zeta^2}\right)$ for the strict feasibility setting. We note that our upper bounds under both settings exhibit a near-optimal dependence on $d$, $\epsilon$, and $\zeta$. Finally, we instantiate our framework for tabular CMDPs and show that it can be used to recover near-optimal sample complexities in this setting.


翻译:我们研究无限时域γ折现(线性)约束马尔可夫决策过程(CMDPs),其目标是在满足期望累积约束的条件下,找到最大化期望累积奖励的策略。在给定生成模型访问权限的情况下,我们提出一种原始-对偶框架来求解CMDPs,该框架可利用任何黑盒无约束MDP求解器。对于特征维度为d的线性CMDPs,我们通过使用镜像下降值迭代(MDVI)作为示例MDP求解器来实例化该框架。我们为所得CMDP算法在两种情况下提供样本复杂度界:(i)松弛可行性,允许较小的约束违反;(ii)严格可行性,要求输出策略精确满足约束。对于情况(i),我们证明算法能以高概率返回ε-最优策略,所需样本量为Õ(d²/((1-γ)⁴ε²))。对于情况(ii),我们证明算法需要Õ(d²/((1-γ)⁶ε²ζ²))个样本,其中ζ是问题相关的Slater常数,用于刻画可行域的大小。此外,我们证明了严格可行性设置的下界为Ω(d²/((1-γ)⁵ε²ζ²))。我们指出,两种设置下的上界均表现出对d、ε和ζ的近似最优依赖性。最后,我们针对表格型CMDPs实例化该框架,并证明在此设置下可恢复近似最优的样本复杂度。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员