We show that a graph with $n$ vertices and vertex cover of size $k$ has at most $4^k + n$ potential maximal cliques. We also show that for each positive integer $k$, there exists a graph with vertex cover of size $k$, $O(k^2)$ vertices, and $\Omega(4^k)$ potential maximal cliques. Our results extend the results of Fomin, Liedloff, Montealegre, and Todinca [Algorithmica, 80(4):1146--1169, 2018], who proved an upper bound of $poly(n) 4^k$, but left the lower bound as an open problem.
翻译:我们展示了一个以美元为顶点和顶点的大小为千元的图表,其价值最多为4美元+n美元。我们还显示,对于每正整数美元,就有一个以美元为单位的顶点覆盖面覆盖图,其大小为1美元、O(k)2美元、O(k)2美元,以及Omega(4 ⁇ k)美元,其潜在最大 cliques。我们的结果扩大了Fomin、Liedloff、Montaalegre和Todinca[Algorithmica,80(4):1146-1169,2018]的结果,后者的上限为1美元(n) 4 ⁇ k美元,但将较低部分作为未解决的问题。