Excessive sleepiness in attention-critical contexts can lead to adverse events, such as car crashes. Detecting and monitoring sleepiness can help prevent these adverse events from happening. In this paper, we use the Voiceome dataset to extract speech from 1,828 participants to develop a deep transfer learning model using Hidden-Unit BERT (HuBERT) speech representations to detect sleepiness from individuals. Speech is an under-utilized source of data in sleep detection, but as speech collection is easy, cost-effective, and non-invasive, it provides a promising resource for sleepiness detection. Two complementary techniques were conducted in order to seek converging evidence regarding the importance of individual speech tasks. Our first technique, masking, evaluated task importance by combining all speech tasks, masking selected responses in the speech, and observing systematic changes in model accuracy. Our second technique, separate training, compared the accuracy of multiple models, each of which used the same architecture, but was trained on a different subset of speech tasks. Our evaluation shows that the best-performing model utilizes the memory recall task and categorical naming task from the Boston Naming Test, which achieved an accuracy of 80.07% (F1-score of 0.85) and 81.13% (F1-score of 0.89), respectively.


翻译:关注临界环境中的过度睡眠可能导致诸如汽车撞车等不良事件。 检测和监测睡眠可以帮助防止这些不利事件发生。 在本文中, 我们使用语音数据集从1 828名参与者中提取演讲, 以开发一个深度传输学习模型, 使用隐藏单位 BERT(HuBERT) 语音演示来检测个人的睡眠。 演讲是睡眠检测中数据利用不足的来源, 但是由于语音收集是容易、具有成本效益和非侵入性的, 它为睡眠检测提供了充满希望的资源。 进行了两种互补技术, 以寻找关于个人演讲任务重要性的一致证据。 我们的第一种技术, 掩盖, 评估任务的重要性, 将所有演讲任务合并, 隐藏部分回应, 观察模型准确性方面的系统性变化。 我们的第二种技术, 单独培训, 比较多个模型的准确性, 每一个模型都使用相同的结构, 却在不同的演讲任务中接受训练。 我们的评估显示, 最佳表现模型利用了记忆回顾任务, 并明确指定了波士顿命名测试( 0. 8801 F) 和819 的精确度。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
专知会员服务
35+阅读 · 2021年8月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
31+阅读 · 2021年3月29日
Arxiv
24+阅读 · 2021年1月25日
Arxiv
38+阅读 · 2020年3月10日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
151+阅读 · 2017年8月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
相关论文
Arxiv
31+阅读 · 2021年3月29日
Arxiv
24+阅读 · 2021年1月25日
Arxiv
38+阅读 · 2020年3月10日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
151+阅读 · 2017年8月1日
Top
微信扫码咨询专知VIP会员