In this paper, we propose a deep reinforcement learning (DRL) approach for solving the optimisation problem of the network's sum-rate in device-to-device (D2D) communications supported by an intelligent reflecting surface (IRS). The IRS is deployed to mitigate the interference and enhance the signal between the D2D transmitter and the associated D2D receiver. Our objective is to jointly optimise the transmit power at the D2D transmitter and the phase shift matrix at the IRS to maximise the network sum-rate. We formulate a Markov decision process and then propose the proximal policy optimisation for solving the maximisation game. Simulation results show impressive performance in terms of the achievable rate and processing time.
翻译:在本文中,我们建议采用深入强化学习(DRL)方法,解决网络设备对设备(D2D)通信总和的优化问题,并辅之以智能反射表面(IRS)。IRS的部署是为了减轻干扰,加强D2D发射机与相关D2D接收机之间的信号。我们的目标是联合优化D2D发射机的传输能力和IRS的分阶段转换矩阵,以最大限度地实现网络总和。我们制定了Markov决定程序,然后提出解决最大化游戏的准政策优化。模拟结果显示,在可实现的速度和处理时间方面表现令人印象深刻。