Robots such as autonomous vehicles and assistive manipulators are increasingly operating in dynamic environments and close physical proximity to people. In such scenarios, the robot can leverage a human motion predictor to predict their future states and plan safe and efficient trajectories. However, no model is ever perfect -- when the observed human behavior deviates from the model predictions, the robot might plan unsafe maneuvers. Recent works have explored maintaining a confidence parameter in the human model to overcome this challenge, wherein the predicted human actions are tempered online based on the likelihood of the observed human action under the prediction model. This has opened up a new research challenge, i.e., \textit{how to compute the future human states online as the confidence parameter changes?} In this work, we propose a Hamilton-Jacobi (HJ) reachability-based approach to overcome this challenge. Treating the confidence parameter as a virtual state in the system, we compute a parameter-conditioned forward reachable tube (FRT) that provides the future human states as a function of the confidence parameter. Online, as the confidence parameter changes, we can simply query the corresponding FRT, and use it to update the robot plan. Computing parameter-conditioned FRT corresponds to an (offline) high-dimensional reachability problem, which we solve by leveraging recent advances in data-driven reachability analysis. Overall, our framework enables online maintenance and updates of safety assurances in human-robot interaction scenarios, even when the human prediction model is incorrect. We demonstrate our approach in several safety-critical autonomous driving scenarios, involving a state-of-the-art deep learning-based prediction model.
翻译:自动飞行器和辅助操纵器等机器人正在动态环境中越来越多地运行,并且接近人们。在这样的情况下,机器人可以利用人类运动预测器预测未来状况,规划安全高效的轨迹。然而,当观察到的人类行为偏离模型预测时,机器人可能会计划不安全的动作。最近的工作探索了保持人类模型中的信任参数,以克服这一挑战,其中预测的人类行动根据预测模型下观测到的人类行动的可能性在网上变色。这打开了一个新的研究挑战,即:\textit{如何在信任参数变化时在网上计算未来人类状态?}在这项工作中,我们建议采用汉密尔顿-贾科比(HJ)基于可实现性的方法来克服这一挑战。把信任参数当作系统的一个虚拟状态,我们计算了一个有参数调节的前瞻性前方模型(FRT), 提供未来人类的预测情景, 包括信任参数变化, 我们可以简单地在最新的FRT-RT 模型中查询未来人类状态, 并使用最新的可实现的可变性数据, 我们的可变性模型, 更新了我们最新的可变性数据。