Teleoperation provides a way for human operators to guide robots in situations where full autonomy is challenging or where direct human intervention is required. It can also be an important tool to teach robots in order to achieve autonomous behaviour later on. The increased availability of collaborative robot arms and Virtual Reality (VR) devices provides ample opportunity for development of novel teleoperation methods. Since robot arms are often kinematically different from human arms, mapping human motions to a robot in real-time is not trivial. Additionally, a human operator might steer the robot arm toward singularities or its workspace limits, which can lead to undesirable behaviour. This is further accentuated for the orchestration of multiple robots. In this paper, we present a VR interface targeted to multi-arm payload manipulation, which can closely match real-time input motion. Allowing the user to manipulate the payload rather than mapping their motions to individual arms we are able to simultaneously guide multiple collaborative arms. By releasing a single rotational degree of freedom, and by using a local optimization method, we can improve each arm's manipulability index, which in turn lets us avoid kinematic singularities and workspace limitations. We apply our approach to predefined trajectories as well as real-time teleoperation on different robot arms and compare performance in terms of end effector position error and relevant joint motion metrics.


翻译:远程操作为人类操作者提供了在完全自主具有挑战性或需要人类直接干预的情况下指导机器人的一种方法。它也可以成为向机器人传授机器人的重要工具,以便日后实现自主行为。合作机器人武器与虚拟现实(VR)装置的可用性增加为开发新型远程操作方法提供了充足的机会。由于机器人武器在运动上往往与人类武器不同,实时将人类动作映射给机器人并非微不足道。此外,如果人类操作者可以将机器人臂转向单一旋转的自由度,或者其工作空间限制,从而可能导致不良行为。这对多个机器人的调控来说,这也更加突出。在本文中,我们展示了针对多武器有效载荷操纵的VR界面,这可以密切匹配实时输入动作。允许用户操纵有效载荷,而不是将自己的动作映射到单个武器上,我们可以同时引导多个合作性武器。通过释放单一的旋转自由度,以及使用本地优化方法,我们可以改进每个臂臂的可操作性指数,这反过来让我们避免相关移动的奇特和空间操作性。我们把我们的方法应用到不同的结果作为最终的轨道。

0
下载
关闭预览

相关内容

专知会员服务
40+阅读 · 2020年9月6日
【ICML2020-浙江大学】对抗性互信息的文本生成
专知会员服务
44+阅读 · 2020年7月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年4月2日
Arxiv
0+阅读 · 2021年4月1日
Arxiv
0+阅读 · 2021年4月1日
Slimmable Generative Adversarial Networks
Arxiv
3+阅读 · 2020年12月10日
VIP会员
相关VIP内容
专知会员服务
40+阅读 · 2020年9月6日
【ICML2020-浙江大学】对抗性互信息的文本生成
专知会员服务
44+阅读 · 2020年7月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员