Recent work has shown that cell phone mobility data has the unique potential to create accurate models for human mobility and consequently the spread of infected diseases. While prior studies have exclusively relied on a mobile network operator's subscribers' aggregated data in modelling disease dynamics, it may be preferable to contemplate aggregated mobility data of infected individuals only. Clearly, naively linking mobile phone data with health records would violate privacy by either allowing to track mobility patterns of infected individuals, leak information on who is infected, or both. This work aims to develop a solution that reports the aggregated mobile phone location data of infected individuals while still maintaining compliance with privacy expectations. To achieve privacy, we use homomorphic encryption, validation techniques derived from zero-knowledge proofs, and differential privacy. Our protocol's open-source implementation can process eight million subscribers in 70 minutes.
翻译:最近的工作表明,手机流动数据具有创造准确的人类流动模式,从而传播受感染疾病的独特潜力。虽然先前的研究完全依靠移动网络操作员的用户在模拟疾病动态方面的汇总数据,但最好只考虑受感染者的综合流动数据。 显然,天真地将移动电话数据与健康记录联系起来会侵犯隐私,因为要么允许跟踪受感染者的移动模式,泄露受感染者的信息,要么两者兼而有之。 这项工作旨在开发一种解决方案,报告受感染者的综合移动电话定位数据,同时保持对隐私的预期。 为了实现隐私,我们使用同质加密、根据零知识证明产生的验证技术以及差异隐私。我们的协议的开放源码实施可以在70分钟内处理800万个受感染者。