In this paper, we describe a numerical algorithm for the self-consistent simulations of surface water and sediment dynamics. The method is based on the original Lagrangian-Eulerian CSPH-TVD approach for solving the Saint-Venant and Exner equations, taking into account the physical factors essential for the understanding of the shallow water and surface soil layer motions, including complex terrain structure and its evolution due to sediment transport. Additional Exner equation for sediment transport has been used for the numerical CSPH-TVD scheme stability criteria definition. By using OpenMP-CUDA and GPUDirect technologies for hybrid computing systems (supercomputers) with several graphic coprocessors (GPUs) interacting with each other via the PCI-E / NVLINK interface we also develop a parallel numerical algorithm for the CSPH-TVD method. The developed parallel version of the algorithm demonstrates high efficiency for various configurations of Nvidia Tesla CPU + GPU computing systems. In particular, maximal speed up is 1800 for a system with four C2070 GPUs compare to the serial version for the CPU. The calculation time on the GPU V100~(Volta architecture) is reduced by 95 times compared to the GPU C2070~(Fermi architecture).
翻译:在本文中,我们描述地表水和沉积物动态自我一致模拟的数值算法,该方法以最初的Lagrangian-Eulerian CSPH-TVD 方法为基础,解决Saint-Venant和Exner等式,同时考虑到对了解浅水和地表土壤层运动至关重要的物质因素,包括复杂的地形结构及其因沉积物迁移而演化。在数字的 CSPH-TVD 系统稳定性标准定义中,还使用了沉积物运输的额外Exner等式。特别是,使用OpenMP-CUDA和GPUDirect技术,用于混合计算机系统(超级计算机)和若干图形共处理器(GPUS),通过PCI-E/NVLINK接口相互互动,我们还为CSPH-TVD方法开发了平行的数字算法。所开发的平行算法显示,Nvidia Tesla CPU + GPU计算系统的各种配置效率很高。特别是,使用4个 C2070GPU(C-70GPU)的系统的最大速度为1800,与序列结构比较的C-VPUI-100,比GPI的C的C-VLU的C-100时间结构的计算方法减少了。