Emotion-cause pair extraction (ECPE), as an emergent natural language processing task, aims at jointly investigating emotions and their underlying causes in documents. It extends the previous emotion cause extraction (ECE) task, yet without requiring a set of pre-given emotion clauses as in ECE. Existing approaches to ECPE generally adopt a two-stage method, i.e., (1) emotion and cause detection, and then (2) pairing the detected emotions and causes. Such pipeline method, while intuitive, suffers from two critical issues, including error propagation across stages that may hinder the effectiveness, and high computational cost that would limit the practical application of the method. To tackle these issues, we propose a multi-task learning model that can extract emotions, causes and emotion-cause pairs simultaneously in an end-to-end manner. Specifically, our model regards pair extraction as a link prediction task, and learns to link from emotion clauses to cause clauses, i.e., the links are directional. Emotion extraction and cause extraction are incorporated into the model as auxiliary tasks, which further boost the pair extraction. Experiments are conducted on an ECPE benchmarking dataset. The results show that our proposed model outperforms a range of state-of-the-art approaches.


翻译:情感- 情感- 情感- 情感- 情感- 情感- 情感- 情感- 两性分离( ECPE) 是一项突发的自然语言处理任务,目的是共同调查情感及其在文件中的根本原因。 它扩大了先前的情感- 情感- 情感- 提取( ECE) 任务, 但不要求像 ECE 那样的一套预发情感- 情感- 提取( ECPE ) 。 现有的ECPE 方法通常采用两阶段方法, 即 (1) 情感- 情感- 原因检测, 以及 (2) 将所检测到的情感和原因配对。 这种管道方法虽然直观性, 却有两个关键问题, 包括可能妨碍效果的跨阶段错误传播, 以及会限制该方法实际应用的高计算成本。 为了解决这些问题, 我们提议了一个多任务- 学习模式模式模式, 可以同时提取情感- 连接预测任务, 并学习情感- 连接导致条款的链接。 情感- 情感- 情感- 提取和原因的连接是方向的。 作为辅助任务, 将情感- 纳入该模式, 进一步增强对子的提取 提取 。 实验是在ECPEPEPE- 基准化- 实验进行 基准化- 测试- 模型的模型- 测试- 显示 模型- 模型- 外形 外形 外形 外形 。

0
下载
关闭预览

相关内容

两人亲密社交应用,官网: trypair.com/
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
深度学习自然语言处理阅读清单
专知
23+阅读 · 2019年1月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Meta Learning for Causal Direction
Arxiv
5+阅读 · 2020年7月6日
Arxiv
7+阅读 · 2019年5月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
深度学习自然语言处理阅读清单
专知
23+阅读 · 2019年1月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Top
微信扫码咨询专知VIP会员