项目名称: 面向不平衡数据分类的演化硬件集成学习方法研究

项目编号: No.61203308

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 自动化学科

项目作者: 王进

作者单位: 重庆邮电大学

项目金额: 24万元

中文摘要: 不平衡数据分类问题是数据挖掘与机器学习领域的研究热点。在数据挖掘应用中,不平衡数据分类问题广泛存在,而大多传统的分类学习方法都不适用于不平衡数据分类。针对演化硬件识别方法在不平衡数据分类中存在的少类识别率低、泛化能力弱、硬件实现代价大等问题,本课题拟以针对不平衡数据分类的演化硬件集成学习方法为研究对象,主要研究内容包括:1)设计面向不平衡数据分类的特征选择方法,研究正负特征的优化组合;2)构建数据层面的不平衡样本抽样算法;3)研究结合样本抽样的演化硬件多分类器集成学习方法;4)探索演化硬件分类器选择性集成学习方法,5)完成演化硬件分类算法模型及其在FPGA上的实现。本课题的研究有助于提高演化硬件识别系统在信息检索、文本自动分类、基于DNA微阵列数据的疾病诊断等应用中的数据处理能力与识别性能,实现对高特征维度海量不平衡数据的有效分类与处理,为研制出实用的高速不平衡数据分类系统奠定理论基础。

中文关键词: 演化计算;模式识别;机器学习;演化硬件;演化超网络

英文摘要: Research on the classification of data with imbalanced class distribution is critical in data mining and machine learning. Two observations account for this point: (1) the class imbalance problem is pervasive in a large number of domains of great importance in data mining community. (2) most popular classification learning systems are reported to be inadequate when encountering the class imbalance problem. For solving the problems of low recognition rate in the small class, poor generalization ability, and high hardware implementation cost existed in a traditional evolvable hardware classification system, a multiple evolvable hardware classifiers ensemble learning method is proposed for the classification of imbalanced data. The contents of this research project include: 1) Designing a feature selection scheme for the classification of imbalanced data, and investigating an optimal combination of positive and negative features. 2) Finding a imbalanced data resampling algorithm from the data level. 3) Combing the data resampling scheme with the multiple evolvable hardware classifiers ensemble learning. 4) Designing a selective ensemble learning algorithm of evolvable hardware classifiers. 5) Building a evolvable hardware classification system and its FPGA implementation. This research project may help to improve

英文关键词: Evolutionary Computing;Pattern Recognition;Machine Learning;Evolavble Hardware;Evolutionary Hypernetworks

成为VIP会员查看完整内容
0

相关内容

《面向制造业的数字化仿真分类》国家标准意见稿
专知会员服务
66+阅读 · 2022年4月13日
【2021新书】面向对象的Python编程,418页pdf
专知会员服务
70+阅读 · 2021年12月15日
FPGA加速深度学习综述
专知会员服务
68+阅读 · 2021年11月13日
【经典书】半监督学习,524页pdf
专知会员服务
134+阅读 · 2021年8月20日
《多任务学习》最新综述论文,20页pdf
专知会员服务
123+阅读 · 2021年4月6日
【干货书】面向机器学习的自然语言标注,341页pdf
专知会员服务
67+阅读 · 2021年2月7日
基于机器学习的数据库技术综述
专知会员服务
54+阅读 · 2021年1月2日
专知会员服务
80+阅读 · 2020年6月20日
基于深度学习的多标签生成研究进展
专知会员服务
142+阅读 · 2020年4月25日
新书《面向机器学习和数据分析的特征工程》,419页pdf
专知会员服务
142+阅读 · 2019年10月10日
一张图带你回顾华为冬季旗舰新品发布会
ZEALER订阅号
0+阅读 · 2021年12月23日
【KDD2021】基于生成对抗图网络的不平衡网络嵌入
最新《多任务学习》综述,39页pdf
专知
28+阅读 · 2020年7月10日
机器学习自动文本分类
AI前线
23+阅读 · 2018年2月4日
国家自然科学基金
12+阅读 · 2015年12月31日
国家自然科学基金
12+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
29+阅读 · 2020年3月16日
小贴士
相关VIP内容
《面向制造业的数字化仿真分类》国家标准意见稿
专知会员服务
66+阅读 · 2022年4月13日
【2021新书】面向对象的Python编程,418页pdf
专知会员服务
70+阅读 · 2021年12月15日
FPGA加速深度学习综述
专知会员服务
68+阅读 · 2021年11月13日
【经典书】半监督学习,524页pdf
专知会员服务
134+阅读 · 2021年8月20日
《多任务学习》最新综述论文,20页pdf
专知会员服务
123+阅读 · 2021年4月6日
【干货书】面向机器学习的自然语言标注,341页pdf
专知会员服务
67+阅读 · 2021年2月7日
基于机器学习的数据库技术综述
专知会员服务
54+阅读 · 2021年1月2日
专知会员服务
80+阅读 · 2020年6月20日
基于深度学习的多标签生成研究进展
专知会员服务
142+阅读 · 2020年4月25日
新书《面向机器学习和数据分析的特征工程》,419页pdf
专知会员服务
142+阅读 · 2019年10月10日
相关基金
国家自然科学基金
12+阅读 · 2015年12月31日
国家自然科学基金
12+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员