Intent detection of spoken queries is a challenging task due to their noisy structure and short length. To provide additional information regarding the query and enhance the performance of intent detection, we propose a method for semantic expansion of spoken queries, called ConQX, which utilizes the text generation ability of an auto-regressive language model, GPT-2. To avoid off-topic text generation, we condition the input query to a structured context with prompt mining. We then apply zero-shot, one-shot, and few-shot learning. We lastly use the expanded queries to fine-tune BERT and RoBERTa for intent detection. The experimental results show that the performance of intent detection can be improved by our semantic expansion method.
翻译:有意探测口问是一项艰巨的任务,因为其结构吵闹,篇幅短。为了提供有关询问的补充信息,并提高意图检测的性能,我们建议了一种口问的语义扩展方法,称为ConQX,它利用自动递减语言模型GPT-2的文字生成能力。为了避免脱专题文本生成,我们将输入查询设定为结构化背景,并迅速开采。然后我们应用零射、一射和几发学习方法。我们最后使用扩大查询方法微调BERT和ROBERTA进行意向检测。实验结果显示,用我们的语义扩展方法可以改进意向检测的性能。