Geoffrion's theorem is a fundamental result from mathematical programming assessing the quality of Lagrangian relaxation, a standard technique to get bounds for integer programs. An often implicit condition is that the set of feasible solutions is finite or described by rational linear constraints. However, we show through concrete examples that the conclusion of Geoffrion's theorem does not necessarily hold when this condition is dropped. We then provide sufficient conditions ensuring the validity of the result even when the feasible set is not finite and cannot be described using finitely-many linear constraints.
翻译:暂无翻译