For a hypergraph $H$, the transversal is a subset of vertices whose intersection with every edge is nonempty. The cardinality of a minimum transversal is the transversal number of $H$, denoted by $\tau(H)$. The Tuza constant $c_k$ is defined as $\sup{\tau(H)/ (m+n)}$, where $H$ ranges over all $k$-uniform hypergrpahs, with $m$ and $n$ being the number of edges and vertices, respectively. We give upper and lower bounds on $c_k$, for $7\leq k\leq 17$.
翻译:对于高压(H)美元来说,横贯是每端连接非空的脊椎的子集。最低横贯的基点是以$\tau(H)美元表示的横贯数$H(H)美元。图扎常数$c_k$(K)美元的定义是$\sup_Tau(H)/(m+n)$(H)美元)/(m+n)$(H)美元),其中,每面的美元范围大于所有千美元-单面的双螺旋,以美元和美元为基数。我们给出的上限和下限是$c_k$(K),以7\leq k\leq 17美元计算。