Probabilistic databases (PDBs) model uncertainty in data in a quantitative way. In the established formal framework, probabilistic (relational) databases are finite probability spaces over relational database instances. This finiteness can clash with intuitive query behavior (Ceylan et al., KR 2016), and with application scenarios that are better modeled by continuous probability distributions (Dalvi et al., CACM 2009). We formally introduced infinite PDBs in (Grohe and Lindner, PODS 2019) with a primary focus on countably infinite spaces. However, an extension beyond countable probability spaces raises nontrivial foundational issues concerned with the measurability of events and queries and ultimately with the question whether queries have a well-defined semantics. We argue that finite point processes are an appropriate model from probability theory for dealing with general probabilistic databases. This allows us to construct suitable (uncountable) probability spaces of database instances in a systematic way. Our main technical results are measurability statements for relational algebra queries as well as aggregate queries and Datalog queries.


翻译:在既定的正式框架内,概率(关系)数据库是关系数据库实例的有限概率空间。这种有限性可能与直觉查询行为(Ceylan等人, KR 2016年)相冲突,也与以连续概率分布为更好的模型的应用情景相冲突(Dalvi等人, CACM) 。我们正式在(Grohe和Lindner, PODS 2019) 中引入无限的PDB, 主要侧重于可计算无限空间。然而,超出可计算概率空间的扩展会引发与事件和查询的可衡量性有关的非三角基本问题,并最终与询问是否具有明确界定的语义学问题相冲突。我们说,从概率理论看,定点进程是处理一般概率数据库的适当模型。这使我们能够系统地构建合适的(不可计算)数据库概率空间。我们的主要技术成果是用于关系变数查询以及汇总查询和数据查询的可计量性说明。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
专知会员服务
28+阅读 · 2021年8月2日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
28+阅读 · 2020年11月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
0+阅读 · 2021年9月29日
Arxiv
1+阅读 · 2021年9月29日
Arxiv
0+阅读 · 2021年9月25日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员