Statistical prediction plays an important role in many decision processes such as university budgeting (depending on the number of students who will enroll), capital budgeting (depending on the remaining lifetime of a fleet of systems), the needed amount of cash reserves for warranty expenses (depending on the number of warranty returns), and whether a product recall is needed (depending on the number of potentially life-threatening product failures). In statistical inference, likelihood ratios have a long history of use for decision making relating to model parameters (e.g., in evidence-based medicine and forensics). We propose a general prediction method, based on a likelihood ratio (LR) involving both the data and a future random variable. This general approach provides a way to identify prediction interval methods that have excellent statistical properties. For example, if a prediction method can be based on a pivotal quantity, our LR-based method will often identify it. For applications where a pivotal quantity does not exist, the LR-based method provides a procedure with good coverage properties for both continuous or discrete-data prediction applications.


翻译:统计预测在许多决策过程中发挥着重要作用,例如大学预算编制(取决于将入学的学生人数)、资本预算编制(取决于一个系统的剩余寿命)、保证费用所需的现金储备数额(取决于保证回报的数量),以及是否需要产品召回(取决于可能危及生命的产品失灵的数量),在统计推论中,可能性比率在与模型参数(例如循证医学和法医学)有关的决策方面有着悠久的使用历史。我们根据涉及数据和未来随机变量的可能性比率(LR)提出了一个一般预测方法。这一一般方法为确定具有良好统计特性的预测间隔方法提供了一种途径。例如,如果预测方法能够以关键数量为基础,那么我们的基于LR的方法往往会确定它。对于不存在关键数量的应用,基于LR的方法为连续或离散数据预测应用提供了一个具有良好覆盖特性的程序。

0
下载
关闭预览

相关内容

专知会员服务
55+阅读 · 2021年5月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Arxiv
0+阅读 · 2021年11月17日
VIP会员
相关VIP内容
专知会员服务
55+阅读 · 2021年5月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Top
微信扫码咨询专知VIP会员