A Cross-Product Free (CPF) Jacobi-Davidson (JD) type method is proposed to compute a partial generalized singular value decomposition (GSVD) of a large regular matrix pair $(A,B)$. It implicitly solves the mathematically equivalent generalized eigenvalue problem of $(A^TA,B^TB)$ but does not explicitly form the cross-product matrices and thus avoids the possible accuracy loss of the computed generalized singular values and generalized singular vectors. The method is an inner-outer iteration method, where the expansion of the right searching subspace forms the inner iterations that approximately solve the correction equations involved and the outer iterations extract approximate GSVD components with respect to the subspaces. Some convergence results are established for the inner and outer iterations, based on some of which practical stopping criteria are designed for the inner iterations. A thick-restart CPF-JDGSVD algorithm with deflation is developed to compute several GSVD components. Numerical experiments illustrate the efficiency of the algorithm.
翻译:提议采用跨产品自由(CPF) Jacobi-Davidson (JD) 类型方法来计算一个大型普通矩阵对等(A,B)美元(美元)的局部通用单值分解(GSVD),暗含解决数学等同的通用电子价值问题(AäTA,BTB)$(美元),但没有明确构成跨产品矩阵,从而避免计算通用单值和通用单向矢量的准确性损失。该方法是一种内部外迭代法,右搜索子空间的扩展构成内部迭代,以大致解决所涉及的校正方程式,外迭代提取与子空间有关的近似GVD组件。根据内外迭代法为内部外代法设定了一些趋同结果,其中为内部迭代法设计了一些实际停用标准。正在开发一种粗速启动的CPF-JDGDGVVD算法,以计算若干GSVD组件。数字实验说明了算法的效率。