We apply random matrix theory to study the impact of measurement uncertainty on dynamic mode decomposition. Specifically, when the measurements follow a normal probability density function, we show how the moments of that density propagate through the dynamic mode decomposition. While we focus on the first and second moments, the analytical expressions we derive are general and can be extended to higher-order moments. Further, the proposed numerical method to propagate uncertainty is agnostic of specific dynamic mode decomposition formulations. Of particular relevance, the estimated second moments provide confidence bounds that may be used as a metric of trustworthiness, that is, how much one can rely on a finite-dimensional linear operator to represent an underlying dynamical system. We perform numerical experiments on two canonical systems and verify the estimated confidence levels by comparing the moments to those obtained from Monte Carlo simulations.
翻译:暂无翻译