Multiple organ failure (MOF) is a life-threatening condition. Due to its urgency and high mortality rate, early detection is critical for clinicians to provide appropriate treatment. In this paper, we perform quantitative analysis on early MOF prediction with comprehensive machine learning (ML) configurations, including data preprocessing (missing value treatment, label balancing, feature scaling), feature selection, classifier choice, and hyperparameter tuning. Results show that classifier choice impacts both the performance improvement and variation most among all the configurations. In general, complex classifiers including ensemble methods can provide better performance than simple classifiers. However, blindly pursuing complex classifiers is unwise as it also brings the risk of greater performance variation.
翻译:多器官衰竭(MOF)是一种危及生命的状况。 由于其紧迫性和高死亡率,早期检测对于临床医生提供适当治疗至关重要。 在本文中,我们用全面的机器学习(ML)配置对早期MOF预测进行定量分析,包括数据预处理(价值处理缺失、标签平衡、特征缩放)、特征选择、分类选择和超参数调。 结果表明,分类选择既影响性能的改善,也影响所有配置之间的最大差异。 一般来说,包括混合方法在内的复杂分类方法可以比简单的分类师提供更好的性能。 但是,盲目寻找复杂的分类方法是不明智的,因为它也会带来更大的性能差异风险。