Many recent efforts center on assessing the ability of real-world evidence (RWE) generated from non-randomized, observational data to produce results compatible with those from randomized controlled trials (RCTs). One noticeable endeavor is the RCT DUPLICATE initiative (Franklin et al., 2020, 2021). To better reconcile findings from an observational study and an RCT, or two observational studies based on different databases, it is desirable to eliminate differences between study populations. We outline an efficient, network-flow-based statistical matching algorithm that designs well-matched pairs from observational data that resemble the covariate distributions of a target population, for instance, the target-RCT-eligible population in the RCT DUPLICATE initiative studies or a generic population of scientific interest. We demonstrate the usefulness of the method by revisiting the inconsistency regarding a cardioprotective effect of the hormone replacement therapy (HRT) in the Women's Health Initiative (WHI) clinical trial and corresponding observational study. We found that the discrepancy between the trial and observational study persisted in a design that adjusted for study populations' cardiovascular risk profile, but seemed to disappear in a study design that further adjusted for the HRT initiation age and previous estrogen-plus-progestin use. The proposed method is integrated into the R package match2C.
翻译:最近的许多努力都集中在评估来自非随机化的观测数据所产生的真实世界证据(RWE)的能力方面。一项值得注意的努力是RCT DUPLIATE倡议(Franklin等人,2020年,2021年)。为了更好地调和一项观察研究的结果和一项RCT,或基于不同数据库的两项观察研究的结果,有必要消除研究人口之间的差别。我们概述了一种高效的、网络化的、以流动为基础的统计匹配算法,该算法设计出与观测数据相匹配的对口,这种对口与观测数据相似,例如,RCT DUPLIATE倡议研究中的目标-RCT合格人口或具有科学兴趣的通用人口。我们通过重新审视在妇女健康倡议临床试验和相应的观测研究中激素替代疗法的心力保护效果的不一致性,我们发现试验和观察研究在为研究人群的心血管风险2研究而调整后,在设计一个统一的血压2号组合时,试验和观察研究之间一直存在差异。我们发现,在研究中,在研究人口风险2号组合中,在设计中似乎会消失了一种统一的方法。