Lexical Semantics is concerned with how words encode mental representations of the world, i.e., concepts . We call this type of concepts, classification concepts . In this paper, we focus on Visual Semantics , namely on how humans build concepts representing what they perceive visually. We call this second type of concepts, substance concepts . As shown in the paper, these two types of concepts are different and, furthermore, the mapping between them is many-to-many. In this paper we provide a theory and an algorithm for how to build substance concepts which are in a one-to-one correspondence with classifications concepts, thus paving the way to the seamless integration between natural language descriptions and visual perception. This work builds upon three main intuitions: (i) substance concepts are modeled as visual objects , namely sequences of similar frames, as perceived in multiple encounters ; (ii) substance concepts are organized into a visual subsumption hierarchy based on the notions of Genus and Differentia ; (iii) the human feedback is exploited not to name objects, but, rather, to align the hierarchy of substance concepts with that of classification concepts. The learning algorithm is implemented for the base case of a hierarchy of depth two. The experiments, though preliminary, show that the algorithm manages to acquire the notions of Genus and Differentia with reasonable accuracy, this despite seeing a small number of examples and receiving supervision on a fraction of them.


翻译:解说性概念涉及如何用文字来表达世界的心理表现,即概念。我们称之为这种类型的概念,分类概念。在本文中,我们侧重于视觉语义,即人类如何构建代表其视觉感知的概念。我们称之为第二种概念,即实质概念。如本文所示,这两类概念是不同的,而且它们之间的映射是多方面的。在本文中,我们为如何构建与分类概念一对一对应的实质概念提供了理论和算法,从而为自然语言描述和视觉感知之间的无缝融合铺平了道路。这项工作建立在三种主要直觉上:(一) 物质概念以视觉物体为模型,即多个相遇时所认为的类似框架的序列为模型;(二) 物质概念被组织成基于Genus和Daldia概念的视觉子集; (三) 人类反馈不是用于命名对象,而是用于使接受实质概念的层次与自然语言描述和视觉感知之间无缝的融合道路。这项工作建立在三种主要直觉之上:(一) 物质概念是作为视觉对象,尽管进行了初步演算,但还是进行了不同的演算。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
专知会员服务
17+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Semantic Grouping Network for Video Captioning
Arxiv
3+阅读 · 2021年2月3日
Semantics of Data Mining Services in Cloud Computing
Arxiv
4+阅读 · 2018年10月5日
Arxiv
7+阅读 · 2018年4月24日
VIP会员
相关VIP内容
专知会员服务
17+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员