Multi-degree Tchebycheffian splines are splines with pieces drawn from extended (complete) Tchebycheff spaces, which may differ from interval to interval, and possibly of different dimensions. These are a natural extension of multi-degree polynomial splines. Under quite mild assumptions, they can be represented in terms of a so-called MDTB-spline basis; such basis possesses all the characterizing properties of the classical polynomial B-spline basis. We present a practical framework to compute MDTB-splines, and provide an object-oriented implementation in Matlab. The implementation supports the construction, differentiation, and visualization of MDTB-splines whose pieces belong to Tchebycheff spaces that are null-spaces of constant-coefficient linear differential operators. The construction relies on an extraction operator that maps local Tchebycheffian Bernstein functions to the MDTB-spline basis of interest.
翻译:多度切比切夫样条是样条,有从扩展的(完整的)切比切夫空间抽取的碎片,它们可能从间隔到间隔的不同,而且可能具有不同的维度。这是多度多元样条的自然延伸。在相当轻微的假设下,它们可以以所谓的MDTB-spline为基础代表;这种基础拥有古典多边B-spline基础的所有特性。我们提出了一个计算MDTB-spline的实用框架,并在Matlab提供了一个面向对象的实施。执行支持MDTTB-spline的构造、区分和可视化。MDTB-spline的碎片属于Tchebycheff空间,这些空间是常效线性线性操作员的空格。建筑依赖一个提取操作器,将本地的Tchebycheffian Bernstein 功能绘制到 MDTB-spline 的兴趣基础。