The embedding-based representation learning is commonly used in deep learning recommendation models to map the raw sparse features to dense vectors. The traditional embedding manner that assigns a uniform size to all features has two issues. First, the numerous features inevitably lead to a gigantic embedding table that causes a high memory usage cost. Second, it is likely to cause the over-fitting problem for those features that do not require too large representation capacity. Existing works that try to address the problem always cause a significant drop in recommendation performance or suffers from the limitation of unaffordable training time cost. In this paper, we proposed a novel approach, named PEP (short for Plug-in Embedding Pruning), to reduce the size of the embedding table while avoiding the drop of recommendation accuracy. PEP prunes embedding parameter where the pruning threshold(s) can be adaptively learned from data. Therefore we can automatically obtain a mixed-dimension embedding-scheme by pruning redundant parameters for each feature. PEP is a general framework that can plug in various base recommendation models. Extensive experiments demonstrate it can efficiently cut down embedding parameters and boost the base model's performance. Specifically, it achieves strong recommendation performance while reducing 97-99% parameters. As for the computation cost, PEP only brings an additional 20-30% time cost compared with base models. Codes are available at https://github.com/ssui-liu/learnable-embed-sizes-for-RecSys.


翻译:深层学习建议模型通常使用嵌入式代表学习方法,以绘制密集矢量的原始稀疏特性。传统的嵌入方式给所有特性都定出一个统一的大小,有两个问题。首先,许多特性不可避免地导致一个巨大的嵌入表,导致记忆使用成本高。第二,它可能会给那些不需要过多代表能力的特征造成不适当的问题。试图解决问题的现有工作总是导致建议性能显著下降,或者受到无法负担的培训时间成本限制的影响。在本文中,我们提出了一个名为PEP(Plug-In Embeding Prurning)的新颖方法,以减少嵌入表的大小,同时避免建议准确性下降。PEP Prunes嵌入参数,在那些不需要过多代表能力的特性的特性中,可以从这些特征中学习到不适应性能阈值。因此,我们可以通过对每个特性的冗余参数进行处理,自动获得混合的嵌入式嵌入式组合。PEP是一个可以在各种基本建议模型中插入的通用框架。广度实验显示它能有效削减嵌入/内嵌入式Rebeb-reduding Prince-dealal laisal lades asu laxal lax lax lax lax lax lax lax lax laus laus laus lax lax lax lax lax lax laus laus laus 20_ lax lax lax

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
系列教程GNN-algorithms之七:《图同构网络—GIN》
专知会员服务
48+阅读 · 2020年8月9日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
3+阅读 · 2020年2月12日
Arxiv
9+阅读 · 2018年1月30日
VIP会员
相关VIP内容
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员