GenAI-based coding assistants have disrupted software development. Their next generation is agent-based, operating with more autonomy and potentially without human oversight. One challenge is to provide AI agents with sufficient context about the software projects they operate in. Like humans, AI agents require contextual information to develop solutions that are in line with the target architecture, interface specifications, coding guidelines, standard workflows, and other project-specific policies. Popular AI agents for software development (e.g., Claude Code) advocate for maintaining tool-specific version-controlled Markdown files that cover aspects such as the project structure, building and testing, or code style. The content of these files is automatically added to each prompt. AGENTS.md has emerged as a potential standard that consolidates tool-specific formats. However, little is known about whether and how developers adopt this format. Therefore, in this paper, we present the results of a preliminary study investigating the adoption of AI configuration files in 466 open-source software projects, what information developers provide in these files, how they present that information, and how they evolve over time. Our findings indicate that there is no established structure yet, and that there is a lot of variation in terms of how context is provided (descriptive, prescriptive, prohibitive, explanatory, conditional). We see great potential in studying which modifications in structure or presentation can positively affect the quality of the generated content. Finally, our analysis of commits that have modified AGENTS.md files provides first insights into how projects continuously extend and maintain these files. We conclude the paper by outlining how the adoption of AI configuration files in provides a unique opportunity to study real-world prompt and context engineering.
翻译:基于生成式人工智能的编码助手已经颠覆了软件开发。其下一代是基于智能体的,以更高的自主性运行,并可能在无人监督的情况下操作。一个挑战是如何为AI智能体提供关于其所操作的软件项目的充分上下文。与人类类似,AI智能体需要上下文信息来开发符合目标架构、接口规范、编码指南、标准工作流程以及其他项目特定策略的解决方案。流行的软件开发AI智能体(例如Claude Code)提倡维护特定于工具的、版本控制的Markdown文件,这些文件涵盖项目结构、构建与测试或代码风格等方面。这些文件的内容会自动添加到每个提示中。AGENTS.md已成为一种潜在的、能整合各工具特定格式的标准。然而,关于开发者是否以及如何采用这种格式,目前知之甚少。因此,本文展示了一项初步研究的结果,该研究调查了466个开源软件项目中AI配置文件的采用情况、开发者在这些文件中提供哪些信息、他们如何呈现这些信息,以及这些文件如何随时间演变。我们的发现表明,目前尚未建立统一的结构,并且在提供上下文的方式(描述性、规定性、禁止性、解释性、条件性)上存在很大差异。我们看到了研究结构或呈现方式的哪些修改能对生成内容的质量产生积极影响的巨大潜力。最后,我们对修改AGENTS.md文件的提交记录的分析,首次揭示了项目如何持续扩展和维护这些文件。我们通过概述AI配置文件在开源软件中的采用如何为研究现实世界中的提示与上下文工程提供了独特机会来结束本文。