We deal with the solution of a generic linear inverse problem in the Hilbert space setting. The exact right hand side is unknown and only accessible through discretised measurements corrupted by white noise with unknown arbitrary distribution. The measuring process can be repeated, which allows to reduce and estimate the measurement error through averaging. We show convergence against the true solution of the infinite-dimensional problem for a priori and a posteriori regularisation schemes as the number of measurements and the dimension of the discretisation tend to infinity under natural and easily verifiable conditions for the discretisation.


翻译:我们处理的是Hilbert空间设置中的通用线性反向问题的解决方案,确切的右手侧是未知的,只能通过被白噪音腐蚀的、不为人知的任意分布的离散测量方法才能进入。测量过程可以重复,通过平均度来减少和估计测量误差。我们发现,对于先验和后验的常规化计划,我们与无限维度问题的真正解决方案是一致的,因为测量数量和离散的维度往往在自然和易于核查的离散条件下无限化。

0
下载
关闭预览

相关内容

专知会员服务
22+阅读 · 2021年9月23日
专知会员服务
92+阅读 · 2021年6月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员