Cyber-Physical Systems (CPS) have been widely deployed in safety-critical domains such as transportation, power and energy. Recently, there comes an increasing demand in employing deep neural networks (DNNs) in CPS for more intelligent control and decision making in sophisticated industrial safety-critical conditions, giving birth to the class of DNN controllers. However, due to the inherent uncertainty and opaqueness of DNNs, concerns about the safety of DNN-enabled CPS are also surging. In this work, we propose an automated framework named AutoRepair that, given a safety requirement, identifies unsafe control behavior in a DNN controller and repairs them through an optimization-based method. Having an unsafe signal of system execution, AutoRepair iteratively explores the control decision space and searches for the optimal corrections for the DNN controller in order to satisfy the safety requirements. We conduct a comprehensive evaluation of AutoRepair on 6 instances of industry-level DNN-enabled CPS from different safety-critical domains. Evaluation results show that AutoRepair successfully repairs critical safety issues in the DNN controllers, and significantly improves the reliability of CPS.


翻译:物理系统和人工智能已经广泛应用于运输、能源等安全关键领域的领域。最近,在复杂工业安全关键条件下更加智能化的控制和决策方面,越来越需要在物理系统中使用深度神经网络(DNN),这就产生了一类名为DNN控制器的控制器。然而,由于DNN的不确定性和不透明性,对DNN支持下的物理系统的安全性担忧也在逐渐增长。在这项工作中,我们提出了一个自动框架,名为AutoRepair,它可以在给定的安全要求下,识别物理系统控制DNN控制器中的不安全行为,并通过基于优化的方法进行修复。当系统执行出现不安全信号时,AutoRepair会迭代地探索控制决策空间,并搜索DNN控制器的最佳修正,以满足安全要求。我们在不同安全关键领域的6个行业级别的DNN-enabled CPS实例上进行了全面评估。评估结果表明,AutoRepair成功修复了DNN控制器中的重要安全问题,并显著提高了物理系统的可靠性。

0
下载
关闭预览

相关内容

【硬核书】树与网络上的概率,716页pdf
专知会员服务
72+阅读 · 2021年12月8日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员