The subject of this paper is the design of efficient and stable spectral methods for time-dependent partial differential equations in unit balls. We commence by sketching the desired features of a spectral method, which is defined by a choice of an orthonormal basis acting in the spatial domain. We continue by considering in detail the choice of a $W$-function basis in a disc in $\mathbb{R}^2$. This is a nontrivial issue because of a clash between two objectives: skew symmetry of the differentiation matrix (which ensures inter alia that the method is stable) and the correct behaviour at the origin. We resolve it by representing the underlying space as an affine space and splitting the underlying functions. This is generalised to any dimension $d \geq 2$ in a natural manner and the paper is concluded with numerical examples that demonstrate how our choice of basis attains the best outcome out of a number of alternatives.


翻译:暂无翻译

0
下载
关闭预览

相关内容

meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
CVE-2018-7600 - Drupal 7.x 远程代码执行exp
黑客工具箱
14+阅读 · 2018年4月17日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
CVE-2018-7600 - Drupal 7.x 远程代码执行exp
黑客工具箱
14+阅读 · 2018年4月17日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员