The growing ubiquity of drones has raised concerns over the ability of traditional air-space monitoring technologies to accurately characterise such vehicles. Here, we present a CNN using a decision tree and ensemble structure to fully characterise drones in flight. Our system determines the drone type, orientation (in terms of pitch, roll, and yaw), and performs segmentation to classify different body parts (engines, body, and camera). We also provide a computer model for the rapid generation of large quantities of accurately labelled photo-realistic training data and demonstrate that this data is of sufficient fidelity to allow the system to accurately characterise real drones in flight. Our network will provide a valuable tool in the image processing chain where it may build upon existing drone detection technologies to provide complete drone characterisation over wide areas.
翻译:无人驾驶飞机的日益普遍性引起了人们对传统空中空间监测技术准确描述这类飞行器特性的能力的关切。 在这里,我们展示了一台CNN, 使用决策树和组合结构来充分描述飞行中的无人驾驶飞机的特性。我们的系统决定了无人驾驶飞机的类型、方向(投放、滚动和雅乌 ), 并进行分解以对不同身体部分(引擎、身体和相机)进行分类。 我们还提供了一个计算机模型,用于迅速生成大量准确标注的摄影现实化培训数据,并表明这一数据足够忠实,使该系统能够准确描述飞行中的真正的无人驾驶飞机。我们的网络将在图像处理链中提供一个宝贵的工具,它可以借助现有的无人驾驶飞机探测技术在广大地区提供完整的无人驾驶飞机特性。