We consider the online unrelated-machine load balancing problem with recourse, where the algorithm is allowed to re-assign prior jobs. We give a $(2+\epsilon)$-competitive algorithm for the problem with $O_\epsilon(\log n)$ amortized recourse per job. This is the first $O(1)$-competitive algorithm for the problem with reasonable recourse, and the competitive ratio nearly matches the long-standing best-known offline approximation guarantee. We also show an $O(\log\log n/\log\log\log n)$-competitive algorithm for the problem with $O(1)$ amortized recourse. The best-known bounds from prior work are $O(\log\log n)$-competitive algorithms with $O(1)$ amortized recourse due to [GKS14], for the special case of the restricted assignment model. Along the way, we design an algorithm for the online generalized network flow problem (also known as network flow problem with gains) with recourse. In the problem, any edge $uv$ in the network has a gain parameter $\gamma_{uv} > 0$ and $\theta$-units of flow sent across $uv$ from $u$'s side becomes $\gamma_{uv} \theta$ units of flow on the $v$'th side. In the online problem, there is one sink, and sources come one by one. Upon arrival of a source, we need to send 1 unit flow from the source. A recourse occurs if we change the flow value of an edge. We give an online algorithm for the problem with recourse at most $O(1/\epsilon)$ times the optimum cost for the instance with capacities scaled by $\frac{1}{1+\epsilon}$. The $(1+\epsilon)$-factor improves upon the corresponding $(2+\epsilon)$-factor of [GKS14], which only works for the ordinary network flow problem. As an immediate corollary, we also give an improved algorithm for the online $b$-matching problem with reassignment costs.


翻译:我们考虑的是在线不相关的机器负载与追索权之间的平衡问题。 在追索中, 算法允许重新指派先前的工作。 我们给出了美元( 2 ⁇ epsilon) 的有竞争力的运算算法 。 以美元( log\ log\ log\ log\ log\ log\ log n) 折合每份工作 。 这是用于合理追索的首个O(1)美元( $) 的有竞争力的处理算法, 而竞争比率几乎与长期最著名的离线近率保证相匹配 。 我们还展示了美元( log\ log\ log\ log\ log\ log n n ) 的有竞争力的算法 $( $) 美元( 美元) 摊合 。 之前的工作最著名的解算法是美元( $( log n) 美元( log\ log n) 美元( log n) 和 美元( 美元( love) liver_ a liver) liver ( we liver) liver) liver) sual sual sublevel ( we.

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员