Cyber threat intelligence is the provision of evidence-based knowledge about existing or potential threats. Benefits of threat intelligence include increased situational awareness, efficiency in security operation centers, and improved prevention, detection, and response capabilities. To process, analyze, and correlate vast amounts of threat information and derive highly contextual intelligence that can be shared and consumed in meaningful times requires utilizing machine-understandable knowledge representation formats that embed the industry-required expressivity and are unambiguous. To a large extend, this is achieved by technologies like ontologies, interoperability schemas, and taxonomies. This research evaluates existing cyber-threat-intelligence-relevant ontologies, sharing standards, and taxonomies for the purpose of measuring their high-level conceptual expressivity with regards to the who, what, why, where, when, and how elements of an adversarial attack in addition to courses of action and the ability to capture more technical indicators. The results confirm that little emphasis has been given to developing a comprehensive cyber threat intelligence ontology with existing efforts not being thoroughly designed, non-interoperable and ambiguous, and lacking semantic reasoning capability.


翻译:网络威胁情报是提供关于现有威胁或潜在威胁的循证知识; 威胁情报的好处包括提高了对形势的认识、安全行动中心的效率以及更好的预防、检测和反应能力; 处理、分析和联系大量威胁信息,并获得可以在有意义的时间分享和消费的高度背景情报,需要利用机器可理解的知识代表格式,这种格式将行业需要的表达性嵌入到行业所需的明确性之中; 在很大程度上,这是通过诸如本体学、互操作性计划和分类等技术实现的; 这项研究评估了现有的与网络威胁情报有关的有关的各种理论、共享标准和分类,目的是衡量它们对于谁、为什么、何时、如何、如何进行对抗攻击,以及除了行动方针和获取更多技术指标的能力之外,在哪些方面,如何进行高度的概念表达; 研究结果证实,对开发全面的网络威胁情报没有给予多少重视,现有的努力没有彻底设计、不相互操作和含糊不清,缺乏语义推理能力。

0
下载
关闭预览

相关内容

分类学是分类的实践和科学。Wikipedia类别说明了一种分类法,可以通过自动方式提取Wikipedia类别的完整分类法。截至2009年,已经证明,可以使用人工构建的分类法(例如像WordNet这样的计算词典的分类法)来改进和重组Wikipedia类别分类法。 从广义上讲,分类法还适用于除父子层次结构以外的关系方案,例如网络结构。然后分类法可能包括有多父母的单身孩子,例如,“汽车”可能与父母双方一起出现“车辆”和“钢结构”;但是对某些人而言,这仅意味着“汽车”是几种不同分类法的一部分。分类法也可能只是将事物组织成组,或者是按字母顺序排列的列表;但是在这里,术语词汇更合适。在知识管理中的当前用法中,分类法被认为比本体论窄,因为本体论应用了各种各样的关系类型。 在数学上,分层分类法是给定对象集的分类树结构。该结构的顶部是适用于所有对象的单个分类,即根节点。此根下的节点是更具体的分类,适用于总分类对象集的子集。推理的进展从一般到更具体。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
Arxiv
4+阅读 · 2018年11月6日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员