Accurate uncertainty quantification of model predictions is a crucial problem in machine learning. Existing Bayesian methods, relying on iterative procedures or Monte Carlo sampling, are computationally expensive to implement and often fail to capture the true posterior of a model, especially in high dimensional problems. This paper proposes a framework for single-shot predictive uncertainty quantification of a neural network that replaces the conventional Bayesian notion of weight probability density function (PDF) with a functional defined on the model weights in a reproducing kernel Hilbert space (RKHS). The resulting RKHS based analysis yields a potential field based interpretation of the model weight PDF and allows the definition of a functional operator, inspired by perturbation theory, that performs a moment decomposition of the model weight PDF to quantify uncertainty of the model predictions. The extracted moments from this approach automatically decompose the weight PDF around the local neighborhood of the specified model output and determine, with great sensitivity, the local heterogeneity and anisotropy of the weight PDF around a given model prediction output. Consequently, these functional moments provide much more precise and sharper estimates of model predictive uncertainty than the central stochastic moments characterized by Bayesian and ensemble methods. Experimental results demonstrate this by evaluating the error detection capability of the model uncertainty quantification methods on test data that has undergone a covariate shift away from the training PDF learned by the model. We find our proposed measure for uncertainty quantification to be significantly more precise and better calibrated than baseline methods on various benchmark datasets, while also being much faster to compute.


翻译:模型预测的准确不确定性量化是机器学习中的一个关键问题。依靠迭代程序或蒙特卡洛取样,现有的贝耶斯方法在计算上非常昂贵,而且往往无法捕捉模型的真正后部,特别是在高度问题中。本文件提出了一个框架,用于单发预测性不确定性量化神经网络,以功能界定生成核心内核空间(RKHS)中模型重量的重量来取代传统的巴耶斯人体重概率密度功能概念(PDF ) 。因此,基于RKHS的分析产生了基于模型重量PDF的潜在实地解释,并允许在扰动理论的启发下,定义一个功能操作者,该功能性操作者对模型的重量进行瞬间变形 PDF以量化模型预测不确定性的不确定性。从这一方法提取的瞬间,在特定模型输出的当地附近地区自动分解重量的PDF值,并以非常敏感的敏感度、本地变异性和异性基准确定各种重量的PDF值。因此,这些功能性瞬间对模型进行了更精确和精确的精确性分析,同时,通过这种精确的测算模型和精确的中央测测测测测测数据的能力,从我们测测测测测测的模型比测的模型的精确的测测测测的精确性的方法,以大大地,从我们测测测测测测测测测的测的测的测的测测的测测测测的精确性测的测的精确性方法,用比测的测的测的精确性方法对了我们的精确度方法,用比测的精确性测的测的精确性测测测测测算方法比测算的精确性测算的测算方法比测算的精确性测测测测测算的测算的测测得的测得的测的模型,用的测得的测得的测得性测算的精确性。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
30+阅读 · 2021年7月7日
Arxiv
13+阅读 · 2021年5月25日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员