Accurate uncertainty quantification of model predictions is a crucial problem in machine learning. Existing Bayesian methods, relying on iterative procedures or Monte Carlo sampling, are computationally expensive to implement and often fail to capture the true posterior of a model, especially in high dimensional problems. This paper proposes a framework for single-shot predictive uncertainty quantification of a neural network that replaces the conventional Bayesian notion of weight probability density function (PDF) with a functional defined on the model weights in a reproducing kernel Hilbert space (RKHS). The resulting RKHS based analysis yields a potential field based interpretation of the model weight PDF and allows the definition of a functional operator, inspired by perturbation theory, that performs a moment decomposition of the model weight PDF to quantify uncertainty of the model predictions. The extracted moments from this approach automatically decompose the weight PDF around the local neighborhood of the specified model output and determine, with great sensitivity, the local heterogeneity and anisotropy of the weight PDF around a given model prediction output. Consequently, these functional moments provide much more precise and sharper estimates of model predictive uncertainty than the central stochastic moments characterized by Bayesian and ensemble methods. Experimental results demonstrate this by evaluating the error detection capability of the model uncertainty quantification methods on test data that has undergone a covariate shift away from the training PDF learned by the model. We find our proposed measure for uncertainty quantification to be significantly more precise and better calibrated than baseline methods on various benchmark datasets, while also being much faster to compute.
翻译:模型预测的准确不确定性量化是机器学习中的一个关键问题。依靠迭代程序或蒙特卡洛取样,现有的贝耶斯方法在计算上非常昂贵,而且往往无法捕捉模型的真正后部,特别是在高度问题中。本文件提出了一个框架,用于单发预测性不确定性量化神经网络,以功能界定生成核心内核空间(RKHS)中模型重量的重量来取代传统的巴耶斯人体重概率密度功能概念(PDF ) 。因此,基于RKHS的分析产生了基于模型重量PDF的潜在实地解释,并允许在扰动理论的启发下,定义一个功能操作者,该功能性操作者对模型的重量进行瞬间变形 PDF以量化模型预测不确定性的不确定性。从这一方法提取的瞬间,在特定模型输出的当地附近地区自动分解重量的PDF值,并以非常敏感的敏感度、本地变异性和异性基准确定各种重量的PDF值。因此,这些功能性瞬间对模型进行了更精确和精确的精确性分析,同时,通过这种精确的测算模型和精确的中央测测测测测测数据的能力,从我们测测测测测测的模型比测的模型的精确的测测测测的精确性的方法,以大大地,从我们测测测测测测测测测的测的测的测的测测的测测测测的精确性测的测的精确性方法,用比测的测的测的精确性方法对了我们的精确度方法,用比测的精确性测的测的精确性测测测测测算方法比测算的精确性测算的测算方法比测算的精确性测测测测测算的测算的测测得的测得的测的模型,用的测得的测得的测得性测算的精确性。