Package-to-group recommender systems recommend a set of unified items to a group of people. Different from conventional settings, it is not easy to measure the utility of group recommendations because it involves more than one user. In particular, fairness is crucial in group recommendations. Even if some members in a group are substantially satisfied with a recommendation, it is undesirable if other members are ignored to increase the total utility. Many methods for evaluating and applying the fairness of group recommendations have been proposed in the literature. However, all these methods maximize the score and output only one package. This is in contrast to conventional recommender systems, which output several (e.g., top-$K$) candidates. This can be problematic because a group can be dissatisfied with the recommended package owing to some unobserved reasons, even if the score is high. To address this issue, we propose a method to enumerate fair packages efficiently. Our method furthermore supports filtering queries, such as top-$K$ and intersection, to select favorite packages when the list is long. We confirm that our algorithm scales to large datasets and can balance several aspects of the utility of the packages.
翻译:套件到组建议系统向一组人推荐一组统一项目。 不同于常规设置, 很难衡量组群建议的效用, 因为它涉及不止一个用户。 特别是, 公平性在组群建议中至关重要 。 即使某个组群的一些成员对建议非常满意, 如果其他成员忽视了建议, 也不宜增加总效用。 文献中已经提出了许多评估和适用群集建议的公平性的方法 。 但是, 所有这些方法都会使得分和产出最大化, 只有一个包包。 这与常规推荐系统不同, 通常推荐系统输出数个候选人( 如最高- $ ) 。 这可能会有问题, 因为一个组群可能由于某些未观察的原因对推荐的软件包不满意, 即使评分很高 。 为了解决这一问题, 我们提议了一种方法来高效地罗列公平包。 我们的方法还支持过滤查询, 如最高- $ 和交叉点等, 在列表长时选择最喜爱的软件包。 我们确认, 我们的算法尺度是大数据集, 可以平衡包件的多个方面 。