Longitudinal studies are subject to nonresponse when individuals fail to provide data for entire waves or particular questions of the survey. We compare approaches to nonresponse bias analysis (NRBA) in longitudinal studies and illustrate them on the Early Childhood Longitudinal Study, Kindergarten Class of 2010-11 (ECLS-K:2011). Wave nonresponse with attrition yields a monotone missingness pattern, and we discuss weighting and multiple imputation (MI) approaches to NRBA for monotone patterns when the missingness mechanism is assumed missing at random (MAR). Weighting adjustments are effective when the constructed weights are correlated to the survey variable of interest. MI allows for incomplete variables to be included in the imputation model, yielding potentially less biased and more efficient estimates when the variables are predictive of the survey outcome. Multilevel models with maximum likelihood estimation and marginal models estimated using generalized estimating equations can also handle incomplete longitudinal data. We add offsets in the MI results to provide sensitivity analyses to assess missing not at random deviations from MAR. We conduct NRBA for descriptive summaries and analytic model estimates and find that in the ECLS-K:2011 application NRBA yields minor changes to the substantive conclusions. The strength of evidence about our NRBA depends on the strength of the relationship between the characteristics in the nonresponse adjustment and the key survey variables, so the key to a successful NRBA is to include strong predictors.


翻译:当个人无法提供整个波浪或调查特定问题的数据时,纵向研究将不答复偏差分析的方法与纵向研究中的不答复偏差分析(NRBA)进行比较,并在儿童早期纵向研究(2010-11年幼稚园级)(ECLS-K:2011)中加以说明;自然减员的不反应会产生单调缺失模式;当随机假设缺失机制时,我们讨论对单调机制的加权和多重估算(MI)方法,以单调模式取代NRBA;当构建的权重与调查的利害变量相关时,则进行加权调整是有效的。 MI允许将不完整的变量纳入估算模型,在变量预测调查结果时,得出潜在偏差和更高效的估计数。 多层次模型,采用通用估计方位方位公式估计,也可处理不完整的长程方程数据。 我们增加MI结果的抵消,提供敏感度分析,以便评估是否随机偏离MAR(MAR)的缺失。我们进行描述性摘要和分析模型,发现在ECLS-K的估算模型中,不完全的变量在NRBA的预测中产生偏差(NRBA-A),取决于2011年的关键变量调整结果。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Topologically penalized regression on manifolds
Arxiv
0+阅读 · 2022年6月10日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员