Recent work in mathematical neuroscience has calculated the directed graph homology of the directed simplicial complex given by the brains sparse adjacency graph, the so called connectome. These biological connectomes show an abundance of both high-dimensional directed simplices and Betti-numbers in all viable dimensions - in contrast to Erd\H{o}s-R\'enyi-graphs of comparable size and density. An analysis of synthetically trained connectomes reveals similar findings, raising questions about the graphs comparability and the nature of origin of the simplices. We present a new method capable of delivering insight into the emergence of simplices and thus simplicial abundance. Our approach allows to easily distinguish simplex-rich connectomes of different origin. The method relies on the novel concept of an almost-d-simplex, that is, a simplex missing exactly one edge, and consequently the almost-d-simplex closing probability by dimension. We also describe a fast algorithm to identify almost-d-simplices in a given graph. Applying this method to biological and artificial data allows us to identify a mechanism responsible for simplex emergence, and suggests this mechanism is responsible for the simplex signature of the excitatory subnetwork of a statistical reconstruction of the mouse primary visual cortex. Our highly optimised code for this new method is publicly available.


翻译:数学神经科学中最近的工作计算了大脑稀疏相邻图(所谓的连接体)给出的定向简单化综合体的定向图形同系法。这些生物连接体显示在所有可行的维度上都有大量高维定向简单化和贝蒂数字,这与Erd\H{o}s-R\'enyi-phraphy 相近大小和密度相近。对经过合成培训的连接体的分析揭示了相似的发现,对图形的可比性和细化物的来源性质提出了疑问。我们提出了一种新的方法,能够对微化物的出现提供洞察力,从而能够简单化地洞察。我们的方法可以很容易地辨别出不同来源的简单化的简单化的相形形形形形形形形形形色。这个方法依赖于几乎是简单化的简单化的简单化的直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直的系统径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直的系统径直径直径直径直径直径直的系统。我们,这是我们方微直径直径直的快速算法的直的快速算算法系次直径直径直的直的直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直的直的直的直的直的直径直径直径直的直的直的直的直的直的直的直的直的直的直的直直直直直直直直直直直直直直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
52+阅读 · 2020年11月3日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年7月1日
Linear Approximate Pattern Matching Algorithm
Arxiv
0+阅读 · 2022年6月30日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
52+阅读 · 2020年11月3日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员