Recent work in mathematical neuroscience has calculated the directed graph homology of the directed simplicial complex given by the brains sparse adjacency graph, the so called connectome. These biological connectomes show an abundance of both high-dimensional directed simplices and Betti-numbers in all viable dimensions - in contrast to Erd\H{o}s-R\'enyi-graphs of comparable size and density. An analysis of synthetically trained connectomes reveals similar findings, raising questions about the graphs comparability and the nature of origin of the simplices. We present a new method capable of delivering insight into the emergence of simplices and thus simplicial abundance. Our approach allows to easily distinguish simplex-rich connectomes of different origin. The method relies on the novel concept of an almost-d-simplex, that is, a simplex missing exactly one edge, and consequently the almost-d-simplex closing probability by dimension. We also describe a fast algorithm to identify almost-d-simplices in a given graph. Applying this method to biological and artificial data allows us to identify a mechanism responsible for simplex emergence, and suggests this mechanism is responsible for the simplex signature of the excitatory subnetwork of a statistical reconstruction of the mouse primary visual cortex. Our highly optimised code for this new method is publicly available.
翻译:数学神经科学中最近的工作计算了大脑稀疏相邻图(所谓的连接体)给出的定向简单化综合体的定向图形同系法。这些生物连接体显示在所有可行的维度上都有大量高维定向简单化和贝蒂数字,这与Erd\H{o}s-R\'enyi-phraphy 相近大小和密度相近。对经过合成培训的连接体的分析揭示了相似的发现,对图形的可比性和细化物的来源性质提出了疑问。我们提出了一种新的方法,能够对微化物的出现提供洞察力,从而能够简单化地洞察。我们的方法可以很容易地辨别出不同来源的简单化的简单化的相形形形形形形形形形形色。这个方法依赖于几乎是简单化的简单化的简单化的直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直的系统径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直的系统径直径直径直径直径直径直的系统。我们,这是我们方微直径直径直的快速算法的直的快速算算法系次直径直径直的直的直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直的直的直的直的直的直径直径直径直的直的直的直的直的直的直的直的直的直的直的直直直直直直直直直直直直直直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直