Pattern matching is a fundamental process in almost every scientific domain. The problem involves finding the positions of a given pattern (usually of short length) in a reference stream of data (usually of large length). The matching can be an exact or as an approximate (inexact). Exact matching is to search for the pattern without allowing for mismatches (or insertions and deletions) of one or more characters in the pattern), while approximate matching is the opposite. For exact matching, several data structures that can be built in linear time and space are used and in practice nowadays. For approximate matching, the solutions proposed to solve this matching are non-linear and currently impractical. In this paper, we designed and implemented a structure that can be built in linear time and space ($O(n)$) and solves the approximate matching problem in $O(m + \frac {log_2n {(log_\Sigma n)} ^{k+1}}{k!} + occ)$ search costs, where $m$ is the length of the pattern, $n$ is the length of the reference, and $k$ is the number of tolerated mismatches (and insertion and deletions).


翻译:在几乎每个科学领域,模式匹配都是一个基本的过程。 问题在于在数据参考流( 通常是长长的长度) 中找到特定模式的位置( 通常是短长的) 。 匹配可以是精确的, 也可以是近似( 不精确的) 。 精确的匹配是寻找模式, 不允许一个或一个以上字符在模式中出现不匹配( 插入和删除), 而近似匹配则相反 。 对于精确的匹配, 使用几个可以以线性时间和空间构建的数据结构, 并在目前实际操作中 。 对于近似匹配, 为解决这一匹配而提出的解决方案是非线性且目前不切实际的。 在本文中, 我们设计和实施了一个可以在线性时间和空间中构建的结构( (n) 美元), 并解决$O (m +\ frac {log_ 2n) { (( log_ sgma n}) } {k+1 ⁇ k+ occ) $ 搜索成本, 其中, $ 为模式的长度, $n 为参考长度, 和删除的长度, $k$ ( 和 $ 为可容忍性。) 。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月21日
Arxiv
0+阅读 · 2022年8月20日
Arxiv
0+阅读 · 2022年8月19日
Arxiv
0+阅读 · 2022年8月18日
Arxiv
0+阅读 · 2022年8月18日
Arxiv
0+阅读 · 2022年8月17日
Arxiv
12+阅读 · 2021年6月29日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员