Modern handheld devices can acquire burst image sequence in a quick succession. However, the individual acquired frames suffer from multiple degradations and are misaligned due to camera shake and object motions. The goal of Burst Image Restoration is to effectively combine complimentary cues across multiple burst frames to generate high-quality outputs. Towards this goal, we develop a novel approach by solely focusing on the effective information exchange between burst frames, such that the degradations get filtered out while the actual scene details are preserved and enhanced. Our central idea is to create a set of \emph{pseudo-burst} features that combine complimentary information from all the input burst frames to seamlessly exchange information. The pseudo-burst representations encode channel-wise features from the original burst images, thus making it easier for the model to learn distinctive information offered by multiple burst frames. However, the pseudo-burst cannot be successfully created unless the individual burst frames are properly aligned to discount inter-frame movements. Therefore, our approach initially extracts preprocessed features from each burst frame and matches them using an edge-boosting burst alignment module. The pseudo-burst features are then created and enriched using multi-scale contextual information. Our final step is to adaptively aggregate information from the pseudo-burst features to progressively increase resolution in multiple stages while merging the pseudo-burst features. In comparison to existing works that usually follow a late fusion scheme with single-stage upsampling, our approach performs favorably, delivering state of the art performance on burst super-resolution and low-light image enhancement tasks. Our codes and models will be released publicly.
翻译:现代手持装置可以在快速的顺序中获取爆破图像序列。 但是, 个人获得的框架会受到多重退化, 并且由于相机振动和对象动作而出现错误。 Burst 图像恢复的目标是将多个爆破框架的辅助性提示有效地结合起来, 从而产生高质量的输出。 为了实现这一目标, 我们开发了一种新颖的方法, 仅仅侧重于爆破框架之间的有效信息交流, 这样在实际场景细节保存和增强的同时, 将降解过滤出来。 我们的核心想法是创建一套 \ emph{ pseudo- burst} 功能, 将来自所有低输入节奏框架的辅助性信息与无缝交换信息结合起来。 原始爆破图像恢复的假发式显示将频道功能编码, 从而让模型更容易地学习由多个爆破框架提供的独特信息。 然而, 假爆破框架要被过滤出来, 而当实际场景细节保存时, 我们最初的方法是从每个爆破框架中提取预处理的特性, 并且用边端分辨率校准的断裂校准校准校准校准校准校准校准校准模块。 然后, 我们的模拟校正的校正的校正的校正将逐渐到升级的校正, 升级的校正的校正的校正, 升级的校正的校正的校正的校正, 将逐渐化的校正的校正的校正的校正的校正, 将逐步制成成的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正, 将逐渐的校正的校正, 将逐渐的校正的校正的校正将逐渐的校正的校正的校正的校正的校正的校正的校正, 的校正, 的校正的校正, 将不断的校正, 的校正的校正, 将逐渐将逐渐将逐渐将逐渐将逐渐将逐渐将逐渐将逐步制成的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正