Montanari and Richard (2015) asked whether a natural semidefinite programming (SDP) relaxation can effectively optimize $\mathbf{x}^{\top}\mathbf{W} \mathbf{x}$ over $\|\mathbf{x}\| = 1$ with $x_i \geq 0$ for all coordinates $i$, where $\mathbf{W} \in \mathbb{R}^{n \times n}$ is drawn from the Gaussian orthogonal ensemble (GOE) or a spiked matrix model. In small numerical experiments, this SDP appears to be tight for the GOE, producing a rank-one optimal matrix solution aligned with the optimal vector $\mathbf{x}$. We prove, however, that as $n \to \infty$ the SDP is not tight, and certifies an upper bound asymptotically no better than the simple spectral bound $\lambda_{\max}(\mathbf{W})$ on this objective function. We also provide evidence, using tools from recent literature on hypothesis testing with low-degree polynomials, that no subexponential-time certification algorithm can improve on this behavior. Finally, we present further numerical experiments estimating how large $n$ would need to be before this limiting behavior becomes evident, providing a cautionary example against extrapolating asymptotics of SDPs in high dimension from their efficacy in small "laptop scale" computations.
翻译:Montanari 和 Richard (2015 ) 询问 自然半终点编程( SDP) 放松是否能够有效地优化 $mathbf{x ⁇ top ⁇ mathbf{W}\ mathbf{x}xx}x=$1美元 $x_i\geq 0美元 对于所有坐标$i$, 美元\ mathbb{W}\ in\ mathbb{R\n\time n} 的自然半终点编程( SDP) 的优化 。 在小数级实验中, 这个 SDP 似乎对 GOE 来说太紧了, 生成一个与最佳矢量 $\ mathb{xf{x} 匹配的排名一最佳矩阵解决方案 。 然而, 我们证明, $n\ to in mathtial deal developmental a ligal excial deal expressional expressional a mindal express.