We establish a novel framework for learning a directed acyclic graph (DAG) when data are generated from a Gaussian, linear structural equation model. It consists of two parts: (1) introduce a permutation matrix as a new parameter within a regularized Gaussian log-likelihood to represent variable ordering; and (2) given the ordering, estimate the DAG structure through sparse Cholesky factor of the inverse covariance matrix. For permutation matrix estimation, we propose a relaxation technique that avoids the NP-hard combinatorial problem of order estimation. Given an ordering, a sparse Cholesky factor is estimated using a cyclic coordinatewise descent algorithm which decouples row-wise. Our framework recovers DAGs without the need for an expensive verification of the acyclicity constraint or enumeration of possible parent sets. We establish numerical convergence of the algorithm, and consistency of the Cholesky factor estimator when the order of variables is known. Through several simulated and macro-economic datasets, we study the scope and performance of the proposed methodology.
翻译:在从高斯线性结构方程模型生成数据时,我们为学习定向循环图(DAG)建立了一个新框架,用于学习定向循环图(DAG),该图由两部分组成:(1) 引入一个变异矩阵,作为正常的高斯日志类似词中的新参数,以代表可变顺序;(2) 根据订单,通过反常变量矩阵的稀疏空空基因子来估计DAG结构。关于变异矩阵估计,我们建议采用一种放松技术,避免NP硬的组合性测序问题。根据订单,稀有的Choolesky因子使用一种循环协调的血源算法进行估算,这种算法分行分离。我们的框架回收了DAG,而无需花费昂贵的时间核实周期性限制或可能母体的查点。我们在知道变量的顺序时,我们建立了算法的数值趋同和Cholesky因子测算器的一致性。我们通过若干模拟和宏观经济数据集,研究拟议方法的范围和性。