The cryptocurrency market is volatile, non-stationary and non-continuous. Together with liquid derivatives markets, this poses a unique opportunity to study risk management, especially the hedging of options, in a turbulent market. We study the hedge behaviour and effectiveness for the class of affine jump diffusion models and infinite activity Levy processes. First, market data is calibrated to stochastic volatility inspired (SVI)-implied volatility surfaces to price options. To cover a wide range of market dynamics, we generate Monte Carlo price paths using an SVCJ model (stochastic volatility with correlated jumps), a close-to-actual-market GARCH-filtered kernel density estimation as well as a historical backtest. In all three settings, options are dynamically hedged with Delta, Delta-Gamma, Delta-Vega and Minimum Variance strategies. Including a wide range of market models allows to understand the trade-off in the hedge performance between complete, but overly parsimonious models, and more complex, but incomplete models. The calibration results reveal a strong indication for stochastic volatility, low jump frequency and evidence of infinite activity. Short-dated options are less sensitive to volatility or Gamma hedges. For longer-dated options, tail risk is consistently reduced by multiple-instrument hedges, in particular by employing complete market models with stochastic volatility.
翻译:加密货币市场是不稳定的、非静止的和非连续的。 与液体衍生物市场一起,这为研究风险管理,特别是在动荡的市场中对各种选择的套期保值提供了独特的机会。 我们研究了类同性跳跃扩散模型和无限活动Levy过程的套期保值行为和有效性。 首先, 市场数据根据受刺激的挥发性( SVI) 迷惑性波动的表面与价格选择进行校准。 为了覆盖广泛的市场动态, 我们利用SVCJ模型( 与相关跳跃的随机波动)、 近于实际的GARCH过滤式内核内衬密度估计以及历史背测试来研究风险管理, 我们研究了套期保值行为和有效性。 在所有三种环境中, 套期都与三角洲、 三角伽玛、 三角 Vega 和最小差异战略进行动态套期保值的套期。 包括一系列广泛的市场模型, 能够理解完整但过敏的模型之间的套期保值, 更复杂但不完整的模型。 校准结果显示, 快速的易易波动性、 快速的套套式风险 。 由低的套式 的套式 的套式, 由易易易易的套期的套期的套期的套期的套期 。