We consider the energy norm arising from elliptic problems with discontinuous piecewise constant diffusion. We prove that under the quasi-monotonicity property on the diffusion coefficient, the best approximation error with continuous piecewise polynomials is equivalent to the $\ell_2$-sum of best errors on elements, in the spirit of A. Veeser for the $H^1$-seminorm. If the quasi-monotonicity is violated, counterexamples show that a robust localization does not hold in general, neither on elements, nor on pairs of adjacent elements, nor on stars of elements sharing a common vertex.
翻译:我们考虑的是由不连续的片段持续扩散产生的椭圆问题产生的能源规范。 我们证明,在扩散系数的准分子属性下,连续片断的多元分子的最佳近似误差相当于A. Veeser精神中的元素最佳误差之和。 美元为H$1美元-半分子精神。 如果半分子特性被违反,反外观表明,稳健的本地化一般不能维持在元素或相邻元素的对等上,也不能维持在共享共同脊椎的元素的恒星上。