In 2008, Langevin and Leander determined the dual function of three classes of monomial bent functions with the help of Stickelberger's theorem: Dillon, Gold and Kasami. In their paper, they proposed one very strong condition such that their method works, and showed that both Gold exponent and Kasami exponent satisfy this condition. In 2018, Pott {\em et al.} investigated the issue of vectorial functions with maximal number of bent components. They found one class of binomial functions which attains the upper bound. They also proposed an open problem regarding monomial function with maximal number of bent components. In this paper, we obtain an interesting result about the condition of Langevin and Leander, and solve the open problem of Pott {\em et al.}. Specifically, we show that: 1) for a monomial bent function over $\mathbb{F}_{2^{2k}}$, if the exponent satisfies the first part of the condition of Langevin and Leander, then it satisfies the entire condition; 2) $x^{2^k+1}$ is the only monomial function over $\mathbb{F}_{2^{2k}}$ which has maximal number of bent components. Fortunately, as a consequence, we also solve an open problem of Ness and Helleseth in 2006.
翻译:2008年,Langevin和Leander在Sickelberger的理论原理的帮助下,确定了三种单项弯曲函数的双重功能:Dillon、Gold和Kasami。在他们的论文中,他们提出了一个非常强大的条件,即他们的方法可以发挥作用,并表明Gold Exponent和Kasami Exponent都满足了这一条件。在2018年,Pott yem et al.}用最大数量的弯曲组件调查了矢量函数的问题。他们发现了一种二元函数的二元函数,到达了上界。他们还提出了一个单项函数的开放问题,其中含有最大数量的弯曲组件。在本文件中,我们获得了关于朗文和莱安德状况的有趣结果,并解决了波特特和卡萨米的开放问题。 具体地说,我们表明:(1) 对于一个包含$mathbb{F ⁇ 2}的单项弯曲函数,如果表人满足了兰格文和莱安德的第一部分,然后满足了整个条件;(2) $x2x@F+1} max}我们唯一的单项函数也是2006年的单项。