Let $A$ be a real $(n\times n)$-matrix. The piecewise linear equation system $z-A\vert z\vert =b$ is called an absolute value equation (AVE). It is well known to be uniquely solvable for all $b\in\mathbb R^n$ if and only if a quantity called the sign-real spectral radius of $A$ is smaller than one. We construct a quantity similar to the sign-real spectral radius that we call the aligning spectral radius $\rho^a$ of $A$. We prove that the AVE has mapping degree $1$ and thus an odd number of solutions for all $b\in\mathbb R^n$ if the aligning spectral radius of $A$ is smaller than one. Under mild genericity assumptions on $A$ we also manage to prove a converse result. Structural properties of the aligning spectral radius are investigated. Due to the equivalence of the AVE to the linear complementarity problem, a side effect of our investigation are new sufficient and necessary conditions for $Q$-matrices.
翻译:允许 $A 是一个真实的 $( n\times n) 美元 。 平面线性方程系统 $z- A\ vert z\ vert = b$ 被称为绝对值方程 $z- AVE z\ vert = b$。 众所周知, 对所有 $b\ in\ mathbbr R $ 美元来说, 唯一可以溶解的就是所有 $b\ in\ mathbbr R $ 的绝对值方程 。 如果一个名为 $A 的信号- 实际光谱半径小于 $A 的轻度通用假设, 我们也可以证明一个反效果。 我们构建了一个类似于我们称之为对齐光谱半径半径的信号半径 $\ rho $ $\ $ rho $ A$ 。 我们的调查的侧面效果是一个新的足够和必要的条件, $Q- 。