Given a graph $G = (V,E)$, a subgraph $H$ is an \emph{additive $+\beta$ spanner} if $\dist_H(u,v) \le \dist_G(u,v) + \beta$ for all $u, v \in V$. A \emph{pairwise spanner} is a spanner for which the above inequality only must hold for specific pairs $P \subseteq V \times V$ given on input, and when the pairs have the structure $P = S \times S$ for some subset $S \subseteq V$, it is specifically called a \emph{subsetwise spanner}. Spanners in unweighted graphs have been studied extensively in the literature, but have only recently been generalized to weighted graphs. In this paper, we consider a multi-level version of the subsetwise spanner in weighted graphs, where the vertices in $S$ possess varying level, priority, or quality of service (QoS) requirements, and the goal is to compute a nested sequence of spanners with the minimum number of total edges. We first generalize the $+2$ subsetwise spanner of [Pettie 2008, Cygan et al., 2013] to the weighted setting. We experimentally measure the performance of this and several other algorithms for weighted additive spanners, both in terms of runtime and sparsity of output spanner, when applied at each level of the multi-level problem. Spanner sparsity is compared to the sparsest possible spanner satisfying the given error budget, obtained using an integer programming formulation of the problem. We run our experiments with respect to input graphs generated by several different random graph generators: Erd\H{o}s--R\'{e}nyi, Watts--Strogatz, Barab\'{a}si--Albert, and random geometric models. By analyzing our experimental results we developed a new technique of changing an initialization parameter value that provides better performance in practice.


翻译:根据一个图形 $G = (V, E) 美元, 一个基调 $H 是一个空格 = (V, E), 一个基调 $H 等于 empph{ = (V, E), 一个基调 = 美元 = 美元 = 美元 = 美元 = 美元 = 美元 + 美元 = 美元 = 美元 = 美元 + 美元 = 美元 = 美元 = 美元 = 美元 + 美元 = (美元, u, v) = 美元 = 美元 = 美元 = 美元 = 美元 = 美元 = 美元 = 美元 = 美元 = 美元 = = 美元 = = 美元 = = = 美元 = =ddist = H, = = = 美元 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2020年10月13日
专知会员服务
18+阅读 · 2020年9月6日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
26+阅读 · 2020年7月19日
【普林斯顿大学-微软】加权元学习,Weighted Meta-Learning
专知会员服务
40+阅读 · 2020年3月25日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年5月13日
Arxiv
0+阅读 · 2021年5月12日
Arxiv
0+阅读 · 2021年5月11日
Arxiv
0+阅读 · 2021年5月4日
VIP会员
相关VIP内容
专知会员服务
32+阅读 · 2020年10月13日
专知会员服务
18+阅读 · 2020年9月6日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
26+阅读 · 2020年7月19日
【普林斯顿大学-微软】加权元学习,Weighted Meta-Learning
专知会员服务
40+阅读 · 2020年3月25日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年5月13日
Arxiv
0+阅读 · 2021年5月12日
Arxiv
0+阅读 · 2021年5月11日
Arxiv
0+阅读 · 2021年5月4日
Top
微信扫码咨询专知VIP会员