This paper proposes a new DeepFake detector FakeBuster for detecting impostors during video conferencing and manipulated faces on social media. FakeBuster is a standalone deep learning based solution, which enables a user to detect if another person's video is manipulated or spoofed during a video conferencing based meeting. This tool is independent of video conferencing solutions and has been tested with Zoom and Skype applications. It uses a 3D convolutional neural network for predicting video segment-wise fakeness scores. The network is trained on a combination of datasets such as Deeperforensics, DFDC, VoxCeleb, and deepfake videos created using locally captured (for video conferencing scenarios) images. This leads to different environments and perturbations in the dataset, which improves the generalization of the deepfake network.
翻译:本文提出一个新的深假探测器 FakeBuster, 用于在视频会议中探测假冒者, 以及社交媒体上被操纵的面孔。 FakeBusster 是一个独立的深层次学习解决方案, 使用户能够检测他人的视频是否在视频会议中被操纵或涂鸦。 此工具独立于视频会议解决方案, 并已通过 Zomom 和 Skype 应用程序测试。 它使用3D 进化神经网络来预测视频分数。 网络在Deeperforensics、 DFDC、 VoxCeleb 和使用本地捕获的( 视频会议场景) 图像创建的深层假像等数据集的组合上接受培训。 这导致数据集的环境和扰动, 从而改进深假象网络的一般化 。