In probabilistic coherence spaces, a denotational model of probabilistic functional languages, mor-phisms are analytic and therefore smooth. We explore two related applications of the corresponding derivatives. First we show how derivatives allow to compute the expectation of execution time in the weak head reduction of probabilistic PCF (pPCF). Next we apply a general notion of "local" differential of morphisms to the proof of a Lipschitz property of these morphisms allowing in turn to relate the observational distance on pPCF terms to a distance the model is naturally equipped with. This suggests that extending probabilistic programming languages with derivatives, in the spirit of the differential lambda-calculus, could be quite meaningful.
翻译:概率一致性空间( 概率一致性空间), 概率功能性语言的省略模型, 模数论是分析性的, 因此是顺畅的。 我们探索了对应衍生物的两个相关应用。 首先, 我们展示了衍生物如何在概率性 PCF (pPCF) 的低头减缩中计算执行时间的预期值。 其次, 我们将这些形态特征的“ 本地”差异的一般概念用于证明Lipschitz 特性, 从而将PPCF 术语的观察距离与该模型自然具备的距离联系起来。 这意味着, 本着差异性羊肉- 计算法的精神, 将衍生物的概率性编程语言扩展到衍生物中, 可能非常有意义 。