We examine the problem of causal response estimation for complex objects (e.g., text, images, genomics). In this setting, classical \emph{atomic} interventions are often not available (e.g., changes to characters, pixels, DNA base-pairs). Instead, we only have access to indirect or \emph{crude} interventions (e.g., enrolling in a writing program, modifying a scene, applying a gene therapy). In this work, we formalize this problem and provide an initial solution. Given a collection of candidate mediators, we propose (a) a two-step method for predicting the causal responses of crude interventions; and (b) a testing procedure to identify mediators of crude interventions. We demonstrate, on a range of simulated and real-world-inspired examples, that our approach allows us to efficiently estimate the effect of crude interventions with limited data from new treatment regimes.
翻译:我们研究复杂物体(如文字、图像、基因组学)的因果反应估计问题。在这一背景下,通常没有古典的 emph{tomic} 干预手段(如字符、像素、DNA基底面的改变等),相反,我们只能获得间接的或emph{crude} 干预手段(如加入写作程序、修改场景、应用基因疗法) 。在这项工作中,我们将这一问题正式化并提供初步解决办法。根据候选人调解人的集合,我们建议(a) 采用两步方法预测粗体干预的因果反应;以及(b) 测试程序,以确定粗体干预的调解人。我们用一系列模拟和真实世界启发的例子表明,我们的方法使我们能够以新的治疗机制有限的数据有效地估计粗体干预的效果。