The violation of a Bell inequality is the paradigmatic example of device-independent quantum information: the nonclassicality of the data is certified without the knowledge of the functioning of devices. In practice, however, all Bell experiments rely on the precise understanding of the underlying physical mechanisms. Given that, it is natural to ask: Can one witness nonclassical behaviour in a truly black-box scenario? Here we propose and implement, computationally and experimentally, a solution to this ab-initio task. It exploits a robust automated optimization approach based on the Stochastic Nelder-Mead algorithm. Treating preparation and measurement devices as black-boxes, and relying on the observed statistics only, our adaptive protocol approaches the optimal Bell inequality violation after a limited number of iterations for a variety photonic states, measurement responses and Bell scenarios. In particular, we exploit it for randomness certification from unknown states and measurements. Our results demonstrate the power of automated algorithms, opening a new venue for the experimental implementation of device-independent quantum technologies.
翻译:违反贝尔的不平等是独立装置量子信息的典型例子:数据的非古典性在不知晓装置功能的情况下得到认证。 然而,实际上,所有贝尔实验都依赖于对基本物理机制的准确理解。 鉴于这一点,自然会问:在真正的黑盒情景中,一个证人能够目睹非古典行为吗? 我们在这里提出并应用、计算和实验性地实施这一AB-IITO任务的解决办法。它利用基于Stochatic Nelder-Mead算法的强有力的自动优化方法。将准备和测量装置作为黑盒处理,并仅依靠观察到的统计数据,我们的适应性协议在对各种光学状态、测量反应和贝尔情景进行数量有限的迭代之后,会处理最佳的贝尔不平等违反情况。特别是,我们利用它来从未知的州和测量中随机进行验证。我们的结果显示了自动化算法的力量,为实验应用依靠装置的量子技术开辟了新的场所。