Randomized higher-order computation can be seen as being captured by a lambda calculus endowed with a single algebraic operation, namely a construct for binary probabilistic choice. What matters about such computations is the probability of obtaining any given result, rather than the possibility or the necessity of obtaining it, like in (non)deterministic computation. Termination, arguably the simplest kind of reachability problem, can be spelled out in at least two ways, depending on whether it talks about the probability of convergence or about the expected evaluation time, the second one providing a stronger guarantee. In this paper, we show that intersection types are capable of precisely characterizing both notions of termination inside a single system of types: the probability of convergence of any lambda-term can be underapproximated by its type, while the underlying derivation's weight gives a lower bound to the term's expected number of steps to normal form. Noticeably, both approximations are tight -- not only soundness but also completeness holds. The crucial ingredient is non-idempotency, without which it would be impossible to reason on the expected number of reduction steps which are necessary to completely evaluate any term. Besides, the kind of approximation we obtain is proved to be optimal recursion theoretically: no recursively enumerable formal system can do better than that.


翻译:随机的更高阶计算可以被视为由具有单一代数操作的羊羔积分所捕获,即二进制概率选择的构造。关于这种计算,重要的是获得任何特定结果的可能性,而不是获得任何结果的可能性或必要性,例如(非)非决定性的计算。终止(可以说是最简单的可达性问题)至少可以用两种方式说明,取决于它谈论的是趋同的可能性还是预期的评估时间,第二个是提供更有力保证的。在本文中,我们表明交叉类型能够精确地描述两种终止概念在单一类型系统中的特征:任何羊羔期的趋同概率可能低于其类型,而基本推算的权重则使预期的正常形式的步骤数目限制较小。显而易见,两种近似都非常紧凑 -- -- 不仅是稳妥,而且是完整性。关键成分是非次要的,没有这种可能性就不可能说明预期的递减步骤在单一类型系统中的特征:任何羊驼期的趋同性步骤的概率可能低于任何最优化的周期。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年2月26日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员